

INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY

To Determine the Molding Sand Strength by Using Different Sand Control Test

Mazhar Iqbal

Department of Foundry-Forge Technology, National Institute of Foundry & Forge Technology, Hatia, Ranchi, India

mazhariq1@gmail.com

Abstract

The need for systematic evaluation of the working qualities of molding sands has led to the development of a wide range of sand control tests. Production of sound casting largely depends upon uniform and good quality of molding sand.

Keywords:.

Introduction

Different type of Sand Control Test

- ✤ Shatter Test
- Strength Test
 - Compressive strength
 - Tensile strength
 - Shear strength
- Permeability Test

Shatter Test Highlight

- This test measure toughness of sand ,sand mix, coal, coke and soil
- ✤ Measure toughness of sand mix.
- Capacity of sand mix to withstand rough handling and strain during pattern withdrawal.
- ✤ It is specified by a shatter index number.

Process

- Standard specimen to fall through a given height onto a steel anvil.
- ✤ The broken pieces are put on a 12mm sieve.
- The ratio of the weight retained on the sieve to the total weight.
- Percentage gives shatter index.

EXAMPLE

Total weight of sample = 50gram Weight retained by sieve = 40 gram Weight pass by sieve = 10 gram Percentage=40/50 X100=80%

Shatter testing equipment

Strength Test

Strength testers are used to estimate the

- Compressive
- Tensile
- ✤ Shear strength.

Compressive strength

- Compressive strength is the pressure required to rupture standard AFS Specimen when subjected to compressive Force.
- The testing specimen is placed between the Jaw, one static and another moving perpendicular to the force of specimen.
- ✤ The pressure is increasing continuously.

http://www.ijesrt.com

(C)International Journal of Engineering Sciences & Research Technology

ISSN: 2277-9655 Scientific Journal Impact Factor: 3.449 (ISRA), Impact Factor: 1.852

Noted down the reading where the rupture in specimen taken palace.

Observation

S.NO	COMPRESSIVE
	STRENGTH
01	5.4X100 gm./cm ²
02	5.1x100 gm./cm ²
03	5.2x100 gm./cm ²

Average compressive strength= 15.7x100/3 gm. /cm² =5.23X100 gm. /cm²

Shear Strength

- Shear strength is the force required on the surface to rupture standard AFS specimen when subjected to shear force.
- Shear strength is half of the compressive strength.

Process

- The testing specimen is placed between the jaw, one static and another moving perpendicular to the force of specimen.
- ✤ The pressure is increased continuously.
- Note down the reading where the rupture in specimen takes place.

Observation

S.NO	SHEAR STRENGTH
01	2.1 gm./cm ²
02	2.2 gm./cm ²
03	2.15 gm./cm ²

Average shear strength = 6.45X100/3 gram/cm² = 2.15X100 gram/cm²

Tensile Strength

Tensile strength is the pressure required to standard specimen when subjected to tensile force.

Process

The testing specimen is placed between the jaw, one is static another is moving perpendicular to the force of specimen.

http://www.ijesrt.com

(C)International Journal of Engineering Sciences & Research Technology [567]

ISSN: 2277-9655 Scientific Journal Impact Factor: 3.449 (ISRA), Impact Factor: 1.852

- ✤ The tensile force is increasing continuously
- Note down the reading where the rupture in specimen taken place

Observation

S.NO	TENSILE STRENGTH
01	4.6X100 gm. /cm ²
02	4.3X100 gm. /cm ²
03	4.1X100 gm. /cm ²

Average tensile strength = $13.0 \times 100/3$ gram/cm² = 4.33×100 gram/cm²

Permeability Test

Permeability is defined as the volume of air going from one side in one minute under a pressure difference of 1gram/cm² and through a cross- sectional area of 1 cm².

Permeability tester

Experimental value we obtained Permeability number = V.H/P.A.T

where V= volume of air H =height of specimen P =pressure difference A= area of cross-section of specimen T=time (min)

Process

- ✤ Take about 4kg of sand.
- ✤ 160 gram of sodium bentonite.
- ✤ 200cc water in a measuring cylinder.
- Mix the above components using small capacity sand muller.
- Take out the sand mix and make sample using hand sand rammer.
- Kept the sample on the permeability water and taken the reading which shown by the equipment.

Observation

S.NO	PERMEABILITY
01	243
02	205
03	227

AVERAGE = 675/3=225

http://www.ijesrt.com

(C)International Journal of Engineering Sciences & Research Technology [568]

Conclusion

By experiments to do different type of sand control test

- We know the condition of sand.
- \clubsuit We know the strength of the sand.
- Control the molding sand properties.
- Production of sound castings largely depends upon good quality of sand.

References

- 1. www.google.com.
- 2. O.P. Khanna foundry technology.
- P L Jain Principles of Foundry Technology Tata McGraw Hill Publishing Company. ASM Metals Hand book Vol.-15, casting